题 目:Chromatic polynomials of hypergraphs
报告人: 董峰明 教授 新加坡南洋理工大学
邀请人: 邓青英 老师 beat365官方网站
摘 要:A hypergraph H consists of two finite sets V and E, called the vertex set and edge set of H, where each element of E is a subset of V . If |e| = 2 holds for each e ∈ E, then H is a graph. The vertex coloring of hypergraphs was introduced by Erdȍs and Hajnal in 1966. For any positive integer k, a proper k-coloring of H is a mapping ϕ from V to {1, 2, · · · , k} such that |{ϕ(v) : v ∈ e}| ≥ 2 holds for each e ∈ E. Clearly, if |e| ≥ 2 for each e ∈ E, then H admits a proper k-coloring for every k ≥ |V |. The chromatic polynomial of H is defined to be the polynomial, denoted by P(H, x), such that P(H, k) counts the number of proper k-colorings of H whenever k is a positive integer. Clearly, if H is a graph G, then P(H, k) is exactly the chromatic polynomial of G.
In this talk, I will introduce some basic properties, known results and open problems of the chromatic polynomials of hypergraphs.
报告人简介:
董峰明教授,新加坡南洋理工大学博士生导师,图论领域(特别是图多项式不变量领域)著名专家。主要研究兴趣包括图与超图的多项式和拟阵、着色、生成树、匹配、极值图等。目前与他人合作撰写出版专著和大学教材5部,由新加坡世界科学出版公司出版;在国际性数学刊物上发表了约80多篇论文,部分文章发表在Journal of Combinatorial Theory Series A、Journal of Combinatorial Theory Series B、Journal of graph Theory、European Journal of Combinatorics、SIAM Journal on Discrete Mathematics等图论与组合学的顶级刊物上;董峰明教授解决了若干公开猜想,其中比较有影响的是牛津大学Dominic Welsh教授提出的关于着色多项式的The Shameful Conjecture.
时 间:2021年12月 20日(周一)上午10:00—12:00
地 点:数学南楼103室,腾讯会议ID:882811289
欢迎广大师生参加!